Search results for "SAX J1808.4-3658"

showing 10 items of 12 documents

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

SAX J1808.4-3658, an accreting millisecond pulsar shining in gamma rays?

2016

We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region of 15deg radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6 sigma (Test Statistic TS = 32), with position compatible with that of SAX J1808.4-3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 +- 0.5) x 10-12 erg cm-2 s-1 and the spectrum is well-represented by a power-law function with photon index 2.1 +- 0.1. We searched for si…

Astrophysics::High Energy Astrophysical PhenomenaPulsar planetEnergy fluxFOS: Physical sciencesGamma-rays: starAstrophysics01 natural sciencesBinary pulsarSettore FIS/05 - Astronomia E AstrofisicaSpitzer Space TelescopePulsarMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsStars: neutronStars: individual: SAX J1808.4-3658Space and Planetary ScienceOrbital motionstars; Stars: individual: SAX J1808.4-3658; Stars: neutron; Space and Planetary Science; Astronomy and Astrophysics [Gamma-rays]Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space Telescope
researchProduct

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

2018

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

High Energy Astrophysical Phenomena (astro-ph.HE)line: formation line: identification stars: individual: SAX J1808.4-3658 stars: magnetic fields stars: neutron X-rays: binaries X-rays: generalPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRadial velocityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarInclination angle0103 physical sciencesSpectral analysisAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

Swings between rotation and accretion power in a binary millisecond pulsar

2013

It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods1, 2, 3. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar4, 5 whose emission is powered by the neutron star’s rotating magnetic field6. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars7, 8 and also by the evidence for a past accretion disc in a rotation-powered milli…

NEUTRON-STARSAstrophysics::High Energy Astrophysical PhenomenaBinary numberAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBinary pulsarX-RAY TRANSIENTSRADIO PULSARSSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsSAX J1808.4-3658Astrophysics::Galaxy AstrophysicsPhysicsMultidisciplinaryAstronomyHIDDENORBITCATALOGAccretion (astrophysics)EVOLUTIONNeutron starSPINHigh-energy astrophysicAstrophysics::Earth and Planetary AstrophysicsLow MassEMISSIONHigh-energy astrophysics; X-RAY TRANSIENTS; SAX J1808.4-3658; NEUTRON-STARS; RADIO PULSARS; EVOLUTION; EMISSION; SPIN; CATALOG; HIDDEN; ORBITX-ray pulsarNature
researchProduct

The Role Of General Relativity in the Evolution of Low-Mass X-ray Binaries

2005

We study the evolution of Low Mass X-ray Binaries (LMXBs) and of millisecond binary radio pulsars (MSPs), with numerical simulations that keep into account the evolution of the companion, of the binary system and of the neutron star. According to general relativity, when energy is released, the system loses gravitational mass. Moreover, the neutron star can collapse to a black hole if its mass exceeds a critical limit, that depends on the equation of state. These facts have some interesting consequences: 1) In a MSP the mass-energy is lost with a specific angular momentum that is smaller than the one of the system, resulting in a positive contribution to the orbital period derivative. If th…

Physics:relativityX-rays : binariesGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)pulsars : generalFOS: Physical sciencesrelativity; binaries : close; stars : individual : SAX J1808.4-3658; stars : neutron; pulsars : general; X-rays : binariesAstronomy and AstrophysicsAstrophysicsMoment of inertiaOrbital periodAstrophysicsSpecific relative angular momentumstars : neutronBlack holeNeutron starPulsarstars : individual : SAX J1808.4-3658Space and Planetary Sciencebinaries : closeLow Mass
researchProduct

Order in the Chaos: Spin-up and Spin-down during the 2002 Outburst of SAX J1808.4-3658

2006

We present a timing analysis of the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. A study of the phase delays of the entire pulse profile shows a behavior that is surprising and difficult to interpret: superposed to a general trend, a big jump by about 0.2 in phase is visible, starting at day 14 after the beginning of the outburst. An analysis of the pulse profile indicates the presence of a significant first harmonic. Studying the fundamental and the first harmonic separately, we find that the phase delays of the first harmonic are more regular, with no sign of the jump observed in the fundamental. The fitting of the phase delays of the first harmonic with a model whi…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Phase (waves)X-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsPulse (physics)Neutron starPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsStars: Pulsars: General Stars: Pulsars: Individual: SAX J1808.4-3658 Stars: Magnetic Fields Stars: Neutron X-Rays: BinariesExponential decaySpin-½
researchProduct

XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

2008

We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)accretion accretion disks line: profiles stars: pulsars: individual: SAX J1808.4-3658 relativity X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarIonizationsymbolsAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicsDoppler effectAstrophysics::Galaxy AstrophysicsX-ray pulsarLine (formation)
researchProduct

Timing of the 2008 outburst of SAX J1808.4–3658 with XMM-Newton: a stable orbital-period derivative over ten years

2009

We report on a timing analysis performed on a 62-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst that started on September 21, 2008. By connecting the time of arrivals of the pulses observed during the XMM observation, we derived the best-fit orbital solution and a best-fit value of the spin period for the 2008 outburst. Comparing this new set of orbital parameters and, in particular, the value of the time of ascending-node passage with the orbital parameters derived for the previous four X-ray outbursts of SAX J1808.4-3658 observed by the PCA on board RXTE, we find an updated value of the orbital period derivative, which …

PhysicsOrbital elementsAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesSecular evolutionAstronomy and AstrophysicsAstrophysicsDerivativeOrbital periodstars: neutron stars: magnetic fields X-rays: binaries X-rays: individuals: SAX J1808.4-3658Astrophysics - Astrophysics of GalaxiesLuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstronomy & Astrophysics
researchProduct

A method to constrain the neutron star magnetic field in Low Mass X-ray Binaries

2005

We describe here a method to put an upper limit to the strength of the magnetic field of neutron stars in low mass X‐ray binaries for which the spin period and the X‐ray luminosity during X‐ray quiescent periods are known. This is obtained using simple considerations about the position of the magnetospheric radius during quiescent periods. We applied this method to the accreting millisecond pulsar SAX J1808.4‐3658, which shows coherent X‐ray pulsations at a frequency of ∼ 400 Hz and a quiescent X‐ray luminosity of ∼ 5 × 1031 ergs/s, and found that B ⩽ 5 × 108 Gauss in this source. Combined with the lower limit inferred from the presence of X‐ray pulsations, this constrains the SAX J1808.4‐3…

PhysicsX-ray: binarieAstrophysics::High Energy Astrophysical PhenomenaStars: individual: SAX J1808.4-3658 KS 1731-260 Aql X-1X-ray: generalX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRadiusindividual: SAX J1808.4-3658 KS 1731-260 Aql X-1; Stars: neutron stars; X-ray: binaries; X-ray: general; X-ray: stars [Accretion discs; Stars]LuminosityMagnetic fieldStars: neutron starNeutron starPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsX-ray: starsAccretion discLow MassAstrophysics::Galaxy Astrophysics
researchProduct

A relativistically broadened iron line from an Accreting Millisecond Pulsar

2010

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

PhysicsrelativityAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars: pulsars: individual: SAX J1808.4-3658accretion accretion diskprofiles; relativity; stars: pulsars: individual: SAX J1808.4-3658; X-rays: binaries; Physics and Astronomy (all) [accretion accretion disks; line]X-rays: binarieNeutron starPhysics and Astronomy (all)Pulsarline: profileMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)Doppler broadening
researchProduct